Copyright
Copyright © José
Luis Lara Carrascal 2007-2023
Sumario
Introducción
XMMS2
Configurar el inicio de XMMS2
Configurar atajos de teclado de inicio y detención de XMMS2
Abraca
Traducción al Español de Abraca
Iniciamos Abraca
Enlaces
Introducción
XMMS2 es
el heredero natural del reproductor musical por excelencia de GNU/Linux,
me refiero a XMMS.
A diferencia de éste no tiene interfaz gráfica y
su
funcionamiento consiste en el típico modo ya habitual en
nuestro
sistema, cliente/servidor.
Tiene
un amplio soporte de formatos de audio y con la ayuda de los
correspondientes plug-ins puede trabajar con los protocolos
de stream
más conocidos de internet. En este manual también
trataremos la instalación de una interfaz gráfica
para
facilitar su uso, ya que la ejecución de este tipo de
programas
en línea de comandos choca un poco con la tradicional manera
"winamp"
que la mayoría de usuarios tenemos a la hora de escuchar
música en nuestro PC.
XMMS2
Instalación
Dependencias
Herramientas de Compilación
Entre paréntesis la
versión con la que se ha compilado XMMS2
para la elaboración de este documento.
* GCC - (13.1.0) o Clang - (16.0.4)
* Pkg-config - (0.29.2)
* Bison - (3.8.2)
* Flex - (2.6.4)
* Cython - (0.29.35)
Librerías
de Desarrollo
* ALSA - (1.2.9)
* Avahi - (0.8)
* Boost - (1.82.0)
* Curl - (8.1.1)
* Efl - (git-30052023)
* FAAD2 - (2.10.1)
* Fftw3f - (3.3.10)
* FLAC - (1.4.2)
* FluidSynth - (2.3.2)
* GLib - (2.74.7)
* JACK - (0.126.0)
* Libao - (1.2.0)
* Libavcodec - (60.3.100)
* Libcdio - (2.1.0)
* Libdiscid - (0.6.2)
* Libgme - (0.6.3)
* Libmac - (4.11)
* Libmms - (0.6.4)
* Libmodplug - (0.8.9.0)
* Libmpcdec - (1_0.1+r475)
* Libofa - (0.9.3)
* Libogg - (1.3.5)
* Libopus - (1.4)
* Libopusfile - (0.12)
* Libsamplerate - (0.2.2)
* Libshout - (2.4.6)
* Libsidplay2 - (2.1.1)
* Libsndfile - (1.2.0)
* Libspeex - (1.2.0)
* Libvisual - (0.4.0)
* Libvorbis - (1.3.7)
* Libxml2 - (2.11.4)
* MAD - (0.15.1b)
* Mpg123 - (1.31.3)
* Ncurses - (6.4)
* OpenSSL - (1.1.1t)
* PulseAudio - (16.1)
* Samba - (4.18.2)
* SDL - (1.2.15)
* Sqlite - (3.42.1)
* Wavpack - (5.6.0)
Intérpretes de Lenguaje de Programación
* Perl - (5.36.0)
* Python - (2.7.18)
* Ruby - (3.2.2)
Aplicaciones
* Valgrind - (3.19.0)
Descarga
xmms2-0.9.3.tar.xz
Firma Digital
xmms2-0.9.3.tar.xz.asc
Verificar la firma digital del paquete
$ gpg --import manualinux.asc
$ gpg --verify xmms2-0.9.3.tar.xz.asc xmms2-0.9.3.tar.xz |
Optimizaciones
$ export
{C,CXX}FLAGS='-O3 -march=znver3 -mtune=znver3'
|
Donde pone znver3 se indica el procesador respectivo de cada sistema seleccionándolo de la siguiente tabla: |
Nota informativa sobre las optimizaciones para GCC
|
* La opción '-march=' establece el procesador mínimo con el que funcionará el programa compilado, la opción '-mtune=' el procesador específico para el que será optimizado.
* Los valores separados por comas, son equivalentes, es decir, que lo mismo da poner '-march=k8' que '-march=athlon64'.
* En versiones de GCC 3.2 e inferiores se utiliza la opción '-mcpu=' en lugar de '-mtune='.
|
Nota informativa sobre las optimizaciones para Clang
|
* La opción '-mtune=' está soportada a partir de la versión 3.4 de Clang.
* Los valores de color azul no son compatibles con Clang.
* Las filas con el fondo de color amarillo son valores exclusivos de Clang y, por lo tanto, no son aplicables con GCC.
|
Valores |
CPU |
Genéricos |
generic |
Produce un código binario
optimizado para la mayor parte de procesadores existentes. Utilizar
este valor si no sabemos el nombre del procesador que tenemos en
nuestro equipo. Este valor sólo es aplicable en la opción
'-mtune=', si utilizamos GCC. Esta opción está disponible a partir de GCC 4.2. |
native |
Produce un código binario
optimizado para el procesador que tengamos en nuestro sistema, siendo
éste detectado utilizando la instrucción cpuid.
Procesadores antiguos pueden no ser detectados utilizando este valor.
Esta opción está disponible a partir de GCC 4.2. |
x86-64 |
Procesador genérico con extensiones 64-bit. Esta opción está disponible a partir de GCC 8 y Clang 1.9. |
x86-64-v2 |
Procesador genérico con con
soporte de instrucciones X86-64 (MMX, SSE, SSE2, LAHFSAHF, POPCNT,
SSE3, SSE4.1, SSE4.2, SSSE3) y extensiones 64-bit. Esta opción
está disponible a partir de GCC 11 y Clang 12. |
x86-64-v3 |
Procesador genérico con con
soporte de instrucciones X86-64 (MMX, SSE, SSE2, LAHFSAHF, POPCNT,
SSE3, SSE4.1, SSE4.2, SSSE3, AVX, AVX2, F16C, FMA, LZCNT, MOVBE, XSAVE,
XSAVEC, FMA4) y extensiones 64-bit. Esta opción está
disponible a partir de GCC 11 y Clang 12. |
x86-64-v4 |
Procesador genérico con con
soporte de instrucciones X86-64 (MMX, SSE, SSE2, LAHFSAHF, POPCNT,
SSE3, SSE4.1, SSE4.2, SSSE3, AVX, AVX2, F16C, FMA, LZCNT, MOVBE, XSAVE,
XSAVEC, AVX512*, FMA4) y extensiones 64-bit. Esta opción
está disponible a partir de GCC 11 y Clang 12. |
Intel |
alderlake |
Intel Alderlake con soporte de
instrucciones x86-64 (MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI,
AVX512BF16, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, ENQCMD, CLDEMOTE,
PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK, UINTR, AMX-BF16, AMX-TILE,
AMX-INT8, AVX-VNNI) y extensiones 64-bit. Esta opción
está disponible a partir de GCC 11 y Clang 12. |
atom |
Intel Atom con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y extensiones
64-bit. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición bonnell. |
bonnell |
Intel Bonnell con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3 y extensiones
64-bit. Esta opción está disponible a partir de GCC 4.9. |
broadwell |
Intel Broadwell con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX, PREFETCHW y extensiones 64-bit. Esta opción
está disponible a partir de GCC 4.9 y Clang 3.6. |
cannonlake |
Intel Cannonlake Server con soporte
de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA,
UMIP y extensiones 64-bit. Esta opción está
disponible a partir de GCC 8 y Clang 3.9. |
cascadelake |
Intel Cascadelake con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI y extensiones
64-bit. Esta opción está disponible a partir de GCC 9 y Clang 8. |
cooperlake |
Intel Cooper
Lake con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND,
FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
XSAVES, AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD,
AVX512VNNI, AVX512BF16 y extensiones 64-bit. Esta opción
está disponible a partir de GCC 10 y Clang 9. |
core2 |
Intel Core2 con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y extensiones 64-bit. Esta
opción está disponible a partir de GCC 4.3. |
core-avx2 |
Intel Core (Haswell). Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición haswell. |
core-avx-i |
Intel Core (ivyBridge)
con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND, F16C y extensiones
64-bit. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición ivybridge. |
corei7 |
Intel Core i7 con soporte
de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 y SSE4.2 y
extensiones 64-bit. Soporta también los procesadores Intel Core
i3 e i5. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición nehalem. |
corei7-avx |
Intel Core i7 con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES y
PCLMUL y extensiones 64-bit. Soporta también los procesadores
Intel Core i3 e i5. Esta opción está disponible
desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición sandybridge. |
emeraldrapids |
Intel Emerald Rapids. Esta opción está disponible a partir de GCC 13 y Clang 16. |
goldmont |
Intel Goldmont con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE y extensiones
64-bit. Esta opción está disponible a partir de GCC 9 y Clang 5. |
goldmont-plus |
Intel Goldmont Plus con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE, RDPID,
SGX, UMIP y extensiones 64-bit. Esta opción está
disponible a partir de GCC 9 y Clang 7. |
grandridge |
Intel Grand Ridge con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES, XSAVEOPT,
FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,
CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL,
AVX-VNNI, AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, RAOINT y
extensiones 64-bit. Esta opción está disponible a partir
de GCC 13 y Clang 16. |
graniterapids |
Intel Grand Ridge con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND, F16C,
AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES,
AVX512VBMI2, VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG,
WBNOINVD, CLWB, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, ENQCMD,
CLDEMOTE, PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK, UINTR, AMX-BF16,
AMX-TILE, AMX-INT8, AVX-VNNI, AVX512-FP16, AVX512BF16, AMX-FP16,
PREFETCHI y extensiones 64-bit. Esta opción está
disponible a partir de GCC 13 y Clang 16. |
haswell |
Intel Haswell con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C y
extensiones 64-bit. Esta opción está disponible a
partir de GCC 4.9. |
i386 |
Intel i386.
|
i486 |
Intel i486. |
i586, pentium |
Intel Pentium sin soporte de instrucciones MMX. |
i686 |
Produce un código binario
optimizado para la mayor parte de procesadores compatibles con la serie
80686 de Intel. Todos los actuales lo son. |
icelake-client |
Intel Icelake Client con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA,
CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG,
AVX512VNNI, VPCLMULQDQ, VAES y extensiones 64-bit. Esta
opción está disponible a partir de GCC 8 y Clang 7. |
icelake-server |
Intel Icelake Server con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA,
CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG,
AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG, WBNOINVD y extensiones
64-bit. Esta opción está disponible a partir de GCC 8 y Clang 7. |
intel |
Intel Haswell y Silvermont. Este
valor sólo es aplicable en la opción '-mtune='. Esta
opción está disponible a partir de GCC 4.9. |
ivybridge |
Intel Ivy Bridge con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX,
AES, PCLMUL, FSGSBASE, RDRND, F16C y extensiones 64-bit. Esta
opción está disponible a partir de GCC 4.9. |
knl |
Intel Knights Landing con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER y extensiones
64-bit. Esta opción está disponible a partir de GCC 5 y Clang 3.4. |
knm |
Intel Knights Mill con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
AVX5124VNNIW, AVX5124FMAPS, AVX512VPOPCNTDQ y extensiones 64-bit. Esta
opción está disponible a partir de GCC 8 y Clang 6. |
lakemont |
Intel Quark Lakemont MCU, basado en el procesador Intel Pentium. Esta opción está disponible a partir de GCC 6 y Clang 3.9. |
meteorlake |
Intel Meteor Lake. Esta opción está disponible a partir de GCC 13 y Clang 16. |
nehalem |
Intel Nehalem con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT y
extensiones 64-bit. Esta opción está disponible a
partir de GCC 4.9. |
nocona |
Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2, SSE3 y extensiones 64-bit. |
penryn |
Intel Penryn con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y SSE4.1. |
pentiumpro |
Intel PentiumPro. |
pentium2 |
Intel Pentium2 basado en PentiumPro con soporte de instrucciones MMX. |
pentium3, pentium3m |
Intel Pentium3 basado en PentiumPro con soporte de instrucciones MMX y SSE. |
pentium4, pentium4m |
Intel Pentium4 con soporte de instrucciones MMX, SSE y SSE2. |
pentium-m |
Versión de bajo consumo de
Intel Pentium3 con soporte de instrucciones MMX, SSE y SSE2. Utilizado
por los portátiles Centrino. |
pentium-mmx |
Intel PentiumMMX basado en Pentium con soporte de instrucciones MMX. |
prescott |
Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2 y SSE3. |
raptorlake |
Intel Raptor Lake. Esta opción está disponible a partir de GCC 13 y Clang 16. |
rocketlake |
Intel Rocket Lake con soporte de
instrucciones x86-64 (MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES) y extensiones 64-bit. Esta
opción está disponible a partir de GCC 11 y Clang 13. |
sandybridge |
Intel Sandy Bridge con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX,
AES, PCLMUL y extensiones 64-bit. Esta opción está
disponible a partir de GCC 4.9 y Clang 3.6. |
sapphirerapids |
Intel Sapphire Rapids con soporte
de instrucciones x86-64 (MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI,
AVX512BF16, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, ENQCMD, CLDEMOTE,
PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK, UINTR, AMX-BF16, AMX-TILE,
AMX-INT8 and AVX-VNNI) y extensiones 64-bit. Esta opción
está disponible a partir de GCC 11 y Clang 12. |
silvermont |
Intel Silvermont con soporte de
instrucciones MOVBE, MMX, SSE, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AES, PCLMU, RDRND y extensiones
64-bit. Esta opción está disponible a partir de GCC 4.9 y Clang 3.6. |
sierraforest |
Intel Sierra Forest con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES, XSAVEOPT,
FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,
CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL,
AVX-VNNI, AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD y extensiones
64-bit. Esta opción está disponible a partir de GCC 13 y Clang 16. |
skylake |
Intel Skylake con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES y extensiones
64-bit. Esta opción está disponible a partir de GCC 6 y Clang 3.6. |
skylake-avx512 |
Intel Skylake Server con soporte
de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL,
AVX512BW, AVX512DQ, AVX512CD y extensiones 64-bit. Esta opción
está disponible a partir de GCC 6 y Clang 3.9. |
tigerlake |
Intel Tiger Lake
con soporte de instrucciones OVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG, WBNOINVD, MOVDIRI,
MOVDIR64B, AVX512VP2INTERSECT y extensiones 64-bit. Esta opción
está disponible a partir de GCC 10 y Clang 10. |
tremont |
Intel Tremont con soporte de
instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE, RDPID,
SGX, UMIP, GFNI-SSE, CLWB, ENCLV y extensiones 64-bit. Esta
opción está disponible a partir de GCC 9 y Clang 7. |
westmere |
Intel Westmere con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES,
PCLMUL y extensiones 64-bit. Esta opción está
disponible a partir de GCC 4.9. |
yonah |
Procesadores basados en la microarquitectura de Pentium M, con soporte de instrucciones MMX, SSE, SSE2 y SSE3. |
AMD |
amdfam10, barcelona |
Procesadores basados en AMD Family
10h core con soporte de instrucciones x86-64 (MMX, SSE, SSE2, SSE3,
SSE4A, 3DNow!, enhanced 3DNow!, ABM y extensiones 64-bit). Esta
opción está disponible a partir de GCC 4.3. La definición barcelona está disponible a partir de Clang 3.6. |
athlon, athlon-tbird |
AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y SSE prefetch. |
athlon4, athlon-xp, athlon-mp |
Versiones mejoradas de AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y full SSE. |
bdver1 |
Procesadores basados en AMD Family
15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES,
PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM
y extensiones 64-bit). Esta opción está disponible a
partir de GCC 4.7. |
bdver2 |
Procesadores basados en AMD Family
15h core con soporte de instrucciones x86-64 (BMI, TBM, F16C, FMA, LWP,
AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción
está disponible a partir de GCC 4.7. |
bdver3 |
Procesadores basados en AMD Family
15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES,
PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM
y extensiones 64-bit). Esta opción está disponible a
partir de GCC 4.8 y Clang 3.4. |
bdver4 |
Procesadores basados en AMD Family
15h core con soporte de instrucciones x86-64 (BMI, BMI2, TBM, F16C,
FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE,
MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones
64-bit). Esta opción está disponible a partir de GCC 4.9 y Clang 3.5. |
btver1 |
Procesadores basados en AMD Family
14h core con soporte de instrucciones x86-64 (MMX, SSE, SSE2, SSE3,
SSE4A, CX16, ABM y extensiones 64-bit). Esta opción
está disponible a partir de GCC 4.6. |
btver2 |
Procesadores basados en AMD Family
16h core con soporte de instrucciones x86-64 (MOVBE, F16C, BMI, AVX,
PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE,
MMX y extensiones 64-bit). Esta opción está
disponible a partir de GCC 4.8. |
geode |
AMD integrado con soporte de instrucciones MMX y 3DNow!. Esta opción está disponible a partir de GCC 4.3. |
k6 |
AMD K6 con soporte de instrucciones MMX. |
k6-2, k6-3 |
Versiones mejoradas de AMD K6 con soporte de instrucciones MMX y 3DNow!. |
k8, opteron, athlon64, athlon-fx |
Procesadores basados en AMD K8 core
con soporte de instrucciones x86-64 (MMX, SSE, SSE2, 3DNow!, enhanced
3DNow! y extensiones 64-bit). |
k8-sse3, opteron-sse3, athlon64-sse3 |
Versiones mejoradas de AMD K8 core
con soporte de instrucciones SSE3. Esta opción está
disponible a partir de GCC 4.3. |
znver1 |
Procesadores basados en AMD Family
17h core con soporte de instrucciones x86-64 (BMI, BMI2, F16C, FMA,
FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES, PCL_MUL,
CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM,
XSAVEC, XSAVES, CLFLUSHOPT, POPCNT y extensiones 64-bit). Esta
opción está disponible a partir de GCC 6 y Clang 4. |
znver2 |
Procesadores basados en AMD Family
17h core con soporte de instrucciones x86-64 (BMI, BMI2, ,CLWB, F16C,
FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES,
PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT y extensiones
64-bit). Esta opción está disponible a partir de GCC 9 y Clang 9. |
znver3 |
Procesadores basados en AMD Family
19h core con soporte de instrucciones x86-64 (BMI, BMI2, CLWB, F16C,
FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES,
PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID, WBNOINVD, PKU,
VPCLMULQDQ, VAES) y extensiones 64-bit. Esta opción
está disponible a partir de GCC 11 y Clang 12. |
znver4 |
Procesadores basados en AMD Family
19h core con soporte de instrucciones x86-64 (BMI, BMI2, CLWB, F16C,
FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES,
PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID, WBNOINVD, PKU,
VPCLMULQDQ, VAES, AVX512F, AVX512DQ, AVX512IFMA, AVX512CD, AVX512BW,
AVX512VL, AVX512BF16, AVX512VBMI, AVX512VBMI2, AVX512VNNI,
AVX512BITALG, AVX512VPOPCNTDQ, GFNI) y extensiones 64-bit. Esta
opción está disponible a partir de GCC 12.3 y Clang 16. |
Optimizaciones adicionales
Optimizaciones adicionales |
GCC |
Graphite
|
$ export {C,CXX}FLAGS+=' -ftree-loop-linear -floop-strip-mine -floop-block' |
IPA
|
$ export {C,CXX}FLAGS+=' -fipa-pta'
|
LTO |
$ export AR=gcc-ar RANLIB=gcc-ranlib NM=gcc-nm
$ export {C,CXX}FLAGS+=' -fuse-linker-plugin -flto=auto'
|
En versiones inferiores a GCC
10, sustituir auto
por el número de núcleos que tenga nuestro
procesador. Si sólo tiene uno, utilizar el parámetro -flto
|
Clang |
Polly |
$ export {C,CXX}FLAGS+=' -O3 -mllvm -polly -mllvm -polly-vectorizer=stripmine'
|
LTO |
$ export AR=llvm-ar RANLIB=llvm-ranlib NM=llvm-nm
$ export {C,CXX}FLAGS+=' -flto' |
ThinLTO |
$ export AR=llvm-ar RANLIB=llvm-ranlib NM=llvm-nm
$ export {C,CXX}FLAGS+=' -flto=thin' |
La aplicación de esta optimización es alternativa
a la tradicional LTO, a partir de Clang 3.9 y, por lo tanto, no es combinable con la misma. |
Parámetros adicionales
Parámetros adicionales de eliminación de avisos en el proceso de compilación |
$ export {C,CXX}FLAGS+=' -w' |
Establecer la ruta de búsqueda de directorios de librerías en sistemas de 64 bits multiarquitectura |
$ export
LDFLAGS+=" -L/usr/lib64 -L/usr/local/lib64 -L/opt/gcc13/lib64" |
Cada usuario tendrá que establecer la ruta de búsqueda de directorios, en función de la distribución que utilice. |
Establecer el uso de enlazador dinámico para Mold |
$ export LDFLAGS+=' -fuse-ld=mold' |
Establecer el uso de enlazador dinámico para LLD |
Clang |
$ export LDFLAGS+=' -fuse-ld=lld' |
Optimizaciones complementarias LTO/ThinLTO de LLD |
$ export LDFLAGS+=' -Wl,--lto-aa-pipeline=globals-aa -Wl,--lto-newpm-passes=memcpyopt' |
Optimizaciones complementarias LTO de LLD |
$ export LDFLAGS+=" -Wl,--lto-partitions=$(nproc)" |
Optimizaciones complementarias ThinLTO de LLD |
$ export LDFLAGS+=" -Wl,--thinlto-jobs=$(nproc)" |
Eliminar los símbolos innecesarios para la ejecución del programa |
$ export
LDFLAGS+=" -Wl,-s" |
Establecer la variable de entorno de uso de compilador para Clang |
$ export CC=clang CXX=clang++ |
Si utilizamos Clang con Ccache, establecemos la variable de entorno correspondiente de uso de compilador. |
$ export CC="ccache clang" CXX="ccache clang++" |
Extracción y
Configuración
$ tar Jxvf
xmms2-0.9.3.tar.xz
$ cd xmms2-0.9.3
$ ./waf configure --prefix=/usr --libdir=/usr/lib64 |
Explicación de los
comandos
--prefix=/usr : Instala el programa en el directorio principal /usr.
--libdir=/usr/lib64 : Instala las librerías en /usr/lib64, en sistemas de 64 bits multiarquitectura. La ubicación y el nombre de este
directorio, puede variar en función de la distribución que
cada usuario use.
Compilación
Parámetros de compilación opcionales
-v : Muestra más información en el proceso de compilación.
-j$(nproc) :
Establece el número de procesos de compilación en
paralelo, en función del número de
núcleos e hilos que tenga nuestro procesador, tomando como
referencia la información mostrada por el sistema con el comando
correspondiente. Si nuestro procesador es mononúcleo de un solo
hilo, no añadir esta opción.
Instalación
como root
$ su
# ./waf install
# ldconfig -v
|
Estadísticas de Compilación e Instalación de XMMS2
Estadísticas de Compilación e Instalación de XMMS2 |
CPU |
AMD Ryzen 5 5500 |
MHz |
3593.250 (BoostMax=4457.000) |
RAM |
32 GB |
Sistema de archivos |
XFS |
Versión del Kernel |
6.3.4-ml SMP PREEMPT_DYNAMIC x86_64 |
Modo de frecuencia de la CPU |
schedutil |
Versión de Glibc |
2.37 |
Enlazador dinámico |
LLD 16.0.4 |
Compilador |
Clang 16.0.4 + Ccache 4.8.1 |
Parámetros de optimización |
-03 -march=znver3
-mtune=znver3 -mllvm -polly -mllvm
-polly-vectorizer=stripmine -flto=thin -Wl,--lto-aa-pipeline=globals-aa -Wl,--lto-newpm-passes=memcpyopt |
Parámetros de compilación |
-v -j12 |
Tiempo de compilación |
18" |
Archivos instalados |
173 |
|
Enlaces simbólicos creados |
10 |
|
Ocupación de espacio en disco |
3,7 MB |
Consumo inicial de CPU y RAM de XMMS2
Consumo inicial de CPU y RAM de XMMS2 |
Programa
|
CPU |
RAM |
xmms2d |
0 % |
45,8 MB |
Para medir el consumo de CPU se utiliza el programa top, y para medir
el consumo de RAM se utiliza el script de Python, ps_mem.py, creado por Pádraig Brady, que podemos encontrar en este enlace. |
Directorio de
configuración personal
~/.config/xmms2 |
Es el
directorio de configuración personal de XMMS2
en nuestro home. |
Desinstalación
como root
1)
MODO TRADICIONAL
En el directorio de compilación
ejecutamos el siguiente comando:
$ su -c "./waf uninstall" |
2)
MODO MANUALINUX
El principal inconveniente del comando anterior es
que
tenemos que tener el directorio de compilación en nuestro
sistema para poder desinstalar el programa. En algunos casos esto
supone muchos megas de espacio en disco. Con el paquete de scripts que
pongo a continuación logramos evitar
el único inconveniente que tiene la compilación
de
programas, y es el tema de la desinstalación de los mismos
sin
la necesidad de tener obligatoriamente una copia de las fuentes
compiladas.
xmms2-0.9.3-scripts.tar.gz
$ su
# tar zxvf xmms2-0.9.3-scripts.tar.gz
# cd xmms2-0.9.3-scripts
# ./Desinstalar_xmms2-0.9.3 |
Copia de Seguridad
como root
Con este otro script creamos una copia de seguridad de los binarios
compilados, recreando la estructura de directorios de los mismos en un
directorio de copias de seguridad (copibin)
que se crea en el directorio /var. Cuando se haya creado el paquete comprimido de
los binarios podemos copiarlo como usuario a nuestro home
y borrar el que ha creado el script de respaldo, teniendo en cuenta que si queremos
volver a restaurar la copia, tendremos que volver a copiarlo al lugar
donde se ha creado.
$ su
# tar zxvf xmms2-0.9.3-scripts.tar.gz
# cd xmms2-0.9.3-scripts
# ./Respaldar_xmms2-0.9.3 |
Restaurar la Copia de Seguridad
como root
Y con este otro script (que se copia de forma automática
cuando
creamos la copia de respaldo del programa) restauramos la copia de
seguridad como root cuando resulte necesario.
$ su
# cd /var/copibin/restaurar_copias
# ./Restaurar_xmms2-0.9.3
|
Configurar el inicio de XMMS2
Es recomendable que el programa lo ejecutemos como usuario, de
ahí, que en esta sección se explique la forma de
añadirlo a los scripts de ejecución de aplicaciones al
inicio de algunos de los entornos gráficos cuya
documentación está disponible en la web.
1) AfterStep
Añadimos el comando de ejecución en la
sección correspondiente del archivo de configuración ~/.afterstep/autoexec, archivo que se crea de forma automática al seleccionar en el menú de AfterStep, Configuración del escritorio >> Archivos de configuración >> AutoExec.
Function "InitFunction"
# Module
"I" Animate
Function
"I" WorkspaceState
Function
"I" WorkspaceModules
Module
"I" Banner
Exec
"I" exec
"$HOME/.afterstep/non-configurable/send_postcard.sh"
Exec
"I" exec
"/usr/local/bin/xbindkeys"
Exec
"I" exec "/usr/local/bin/xmms2d"
EndFunction
|
2) Awesome
Editamos el archivo de configuración personal, ~/.config/awesome/rc.lua y añadimos el comando al final del mismo de la siguiente forma:
client.add_signal("focus", function(c) c.border_color = beautiful.border_focus end)
client.add_signal("unfocus", function(c) c.border_color = beautiful.border_normal end)
-- }}}
os.execute("xbindkeys &")
os.execute("xmms2d &") |
3) Blackbox
Siguiendo el método que se utiliza en el manual de Blackbox lo añadimos al script ~/.blackbox/autostart de la siguiente forma:
#!/bin/sh
(sleep
2; bbkeys &) &
bsetbg -f ~/Fotos/40.jpg
xbindkeys &
xmms2d &
|
4) Enlightenment - E16
En su manual se explica de forma
detenida la forma de añadir aplicaciones al inicio, sólo
tendremos que crear los scripts correspondientes de ejecución.
Abrimos un editor de texto con 3 ventanas y añadimos lo
siguiente a cada una:
xmms2d_init
xmms2d_start
#!/bin/sh
killall -9 xmms2d &> /dev/null
xmms2d &
|
xmms2d_stop
#!/bin/sh
killall -9 xmms2d &> /dev/null
|
Los guardamos con los nombres que encabezan los scripts, les damos
permisos de ejecución y los copiamos a los directorios correspondientes, si no existen los creamos.
$ mkdir -p $HOME/.e16/{Init,Start,Stop}
$ chmod +x xmms2d_*
$ cp xmms2d_init $HOME/.e16/init
$ cp xmms2d_start $HOME/.e16/start
$ cp xmms2d_stop $HOME/.e16/stop
|
5) Fluxbox
Añadimos el comando de ejecución en la
sección correspondiente del script de inicio ~/.fluxbox/startup,
# Applications you want to run
with fluxbox.
# MAKE SURE THAT APPS THAT KEEP RUNNING HAVE AN ''&'' AT THE
END.
#
# unclutter -idle 2 &
# wmnd &
# wmsmixer -w &
wmix &
xmms2d &
|
6) Fvwm
Añadimos el comando de ejecución en la
sección correspondiente del archivo autostart, cuya configuración se explica en el manual de Fvwm.
AddToFunc StartFunction I Test (Init) Exec exec xscreensaver
AddToFunc StartFunction I Test (Init) Exec exec xbindkeys
AddToFunc StartFunction I Test (Init) Exec exec xmms2d
|
7) Fvwm-Crystal
Añadimos el comando de ejecución al final del archivo ~/.fvwm-crystal/preferences/Startup, cuya configuración se explica en el manual de Fvwm-Crystal.
# Launch xmms2d
+ I Test (x xmms2d) Exec pidof xmms2d || exec xmms2d
# vim:ft=fvwm
|
8) IceWM
Añadimos el comando de ejecución al script de inicio ~/.icewm/startup, y el comando de terminación al script de cierre de sesión: ~/.icewm/shutdown.
startup
shutdown
#!/bin/sh
killall -9 xmms2d &> /dev/null
|
9) JWM
Añadimos el comando de ejecución, reinicio y
detención en la sección correspondiente del archivo de
configuración, ~/.jwm/autostart.xml de la versión en español disponible en la web.
<StartupCommand>
xmms2d &
</StartupCommand>
<RestartCommand>
killall -9 xmms2d || xmms2d &
</RestartCommand>
<ShutdownCommand>
killall -9 xmms2d &> /dev/null
</ShutdownCommand>
|
10) Openbox
Añadimos el comando de ejecución al script de inicio ~/.config/openbox/autostart, autostart.sh en versiones inferiores a la 3.5.
sleep 2 && pypanel &
Esetroot -scale ~/Fondos/2141.jpg
xmms2d &
|
11) Pekwm
Añadimos el comando de ejecución en la
sección correspondiente del script de inicio ~/.pekwm/start
# There's probably a few other
good uses for it, too. I mainly pushed for it
# because when I was doing fluxbox's docs, people used to complain that
there
# wasn't one, and I wanted to avoid that for pekwm. ;) --eyez
numlockx &
#idesk &
hsetroot -fill /home/jose/Fotos/Natasha_Henstridge.jpg -gamma 1.5
-sharpen 1.5 -blur 1.0
xmms2d &
|
12) Sawfish
Siguiendo el método que se utiliza en el manual de Sawfish lo añadimos al script ~/.sawfish/autostart de la siguiente forma:
#!/bin/sh
bmpanel &
idesk &
cwallpaper -l
xmms2d &
|
13) Window Maker
Añadimos el comando de ejecución al script de inicio ~/GNUSTEP/Library/WindowMaker/autostart
#!/bin/sh
#
# Place applications to be executed when WindowMaker is started here.
# This should only be used for non-X applications or applications that
# do not support session management. Other applications should be restarted
# by the WindowMaker session restoring mechanism. For that, you should
# either set SaveSessionOnExit=YES or select "Save Session" in the Workspace
# submenu of the root menu when all applications you want started are
# running.
#
# WindowMaker will wait until this script finishes, so if you run any
# commands that take long to execute (like a xterm), put a ``&'' in the
# end of the command line.
#
# This file must be executable.
#
xmms2d &
|
14) LXDE, MATE, ROX Desktop y XFce4
Abrimos un editor de texto y añadimos lo siguiente:
[Desktop Entry]
Type=Application
Name=XMMS2
Comment=
Exec=xmms2d
StartupNotify=false
Terminal=false
Hidden=false
OnlyShowIn=ROX;LXDE;XFCE;MATE;
|
Lo guardamos con el nombre xmms2.desktop y lo copiamos a ~/.config/autostart.
$ mkdir -p ~/.config/autostart
$ cp xmms2.desktop ~/.config/autostart
|
15) Para
los que inician X desde
terminal con el comando startx
Para los usuarios que inician los entornos gráficos con el
comando startx,
pueden añadir el comando de ejecución al archivo .xinitrc que se
encuentra en nuestro home si no existe lo creamos, y
añadimos lo siguiente:
16) XDM
Añadimos el comando de ejecución al
archivo .xsession
que se
encuentra en nuestro home,
si no existe lo creamos, y añadimos lo siguiente:
Configurar atajos de teclado de inicio y detención de XMMS2
Con el uso de XbindKeys (podemos
utilizar cualquier otro gestor de atajos de teclado, empezando por el
soporte nativo de cada entorno gráfico), configuraremos los
atajos de teclado de inicio (reinicio) y detención de XMMS2, para tener siempre un control absoluto sobre el programa, en el caso de tengamos problemas de ejecución con el mismo.
Abrimos con un editor de texto, el archivo de configuración personal de XbindKeys, y a partir de la línea 49, más o menos, añadimos los comandos de ejecución pertinentes.
# specify a mouse button
# iniciar/reiniciar XMMS2
"killall -9 xmms2d || xmms2d &"
Mod4+Mod1+x
# detener XMMS2
"killall -9 xmms2d &> /dev/null"
Mod4+Mod1+q
|
Explicación de los elementos configurados en el archivo de configuración de XbindKeys |
Atajo de teclado |
XbindKeys |
Comando |
Descripción |
Windows + Alt + X |
Mod4+Mod1+x |
killall -9 xmms2d ||\
xmms2d & |
Iniciamos/reiniciamos la ejecución del programa. |
Windows + Alt + Q |
Mod4+Mod1+q |
killall -9 xmms2d &>\
/dev/null |
Detenemos la ejecución del programa. |
Abraca
Este
es uno de los proyectos más recientes de clientes
gráficos de XMMS2 y
tiene soporte de Colecciones,
una de las últimas características
añadidas a XMMS2.
Instalación
Dependencias
Herramientas de Compilación
Entre paréntesis la
versión con la que se ha compilado Abraca
para la elaboración de este documento.
* GCC - (13.1.0)
* Vala - (0.56.8)
* Gettext - (0.21.1)
* Intltool - (0.51.0)
* Pkg-config - (0.29.2)
Librerías de Desarrollo
* XMMS2 - (0.9.3)
* Avahi - (0.8)
* GTK+ - (3.24.38)
* Libgee - (0.20.5)
Descarga
abraca-0.8.2-git-26112020.tar.xz
Firma Digital
abraca-0.8.2-git-26112020.tar.xz.asc
Verificar la firma digital del paquete
$ gpg --import manualinux.asc (sólo es necesario si no lo hemos hecho antes)
$ gpg --verify abraca-0.8.2-git-26112020.tar.xz.asc abraca-0.8.2-git-26112020.tar.xz |
Optimizaciones
Optimizaciones adicionales
Optimizaciones adicionales |
Graphite
|
$ export {C,CXX}FLAGS+=' -ftree-loop-linear -floop-strip-mine -floop-block'
|
IPA
|
$ export {C,CXX}FLAGS+=' -fipa-pta'
|
Parámetros adicionales
Establecer la ruta de búsqueda de directorios de librerías en sistemas de 64 bits multiarquitectura |
$ export
LDFLAGS+=" -L/usr/lib64 -L/usr/local/lib64 -L/opt/gcc13/lib64" |
Cada usuario tendrá que establecer la ruta de búsqueda de directorios, en función de la distribución que utilice. |
Establecer el uso de enlazador dinámico para Mold |
$ export LDFLAGS+=' -fuse-ld=mold' |
Eliminar los símbolos innecesarios para la ejecución del programa |
$ export
LDFLAGS+=" -Wl,-s" |
Extracción y
Configuración
$ tar Jxvf abraca-0.8.2-git-26112020.tar.xz
$ cd abraca-0.8.2-git-26112020
$ export CFLAGS+=" -I$PWD/build/external"
$ ./waf configure --prefix=/usr
$ sed -i 's:${LOCALEDIR}:/usr/share/locale:' build/build-config.h
|
Explicación de los
comandos
export CFLAGS+=" -I$PWD/build/external" : Soluciona el siguiente mensaje de error:
external/subzero/subzero/subzero-dns.c:9:10: error fatal: subzero.h: No existe el fichero o el directorio
9 | #include "subzero.h"
| ^~~~~~~~~~~
compilación terminada.
|
--prefix=/usr : Instala el programa en el directorio principal /usr.
sed -i 's:${LOCALEDIR}:/usr/share/locale:' build/build-config.h
: Modifica el archivo de configuración correspondiente para
que se pueda cargar de forma correcta la traducción al
español del programa.
Compilación
Parámetros de compilación opcionales
Instalación
como root
Borrar las locales adicionales instaladas con la utilidad BleachBit
$ su -c "bleachbit -c system.localizations"
|
Estadísticas de Compilación e Instalación de Abraca
Estadísticas de Compilación e Instalación de Abraca |
CPU |
AMD Ryzen 5 5500 |
MHz |
3593.250 (BoostMax=4457.000) |
RAM |
32 GB |
Sistema de archivos |
XFS |
Versión del Kernel |
6.3.4-ml SMP PREEMPT_DYNAMIC x86_64 |
Modo de frecuencia de la CPU |
schedutil |
Versión de Glibc |
2.37 |
Enlazador dinámico |
Mold 1.11.0 |
Compilador |
GCC 13.1.0 |
Parámetros de optimización |
-03 -march=znver3
-mtune=znver3 -ftree-loop-linear -floop-strip-mine -floop-block -fipa-pta |
Parámetros de compilación |
-v -j12 |
Tiempo de compilación |
4" |
Archivos instalados |
7 |
|
Ocupación de espacio en disco |
620 KB |
Consumo inicial de CPU y RAM de Abraca
Consumo inicial de CPU y RAM de Abraca |
Programa
|
CPU |
RAM |
abraca |
0 % |
52,4 MB |
xmms2d |
0 % |
46,3 MB |
TOTAL |
0 % |
98,7 MB |
Para medir el consumo de CPU se utiliza el programa top, y para medir
el consumo de RAM se utiliza el script de Python, ps_mem.py, creado por Pádraig Brady, que podemos encontrar en este enlace. |
Archivo de
configuración personal
~/.config/xmms2/clients/abraca.conf |
Es el archivo de configuración personal de Abraca
en nuestro home. |
Desinstalación como root
1) MODO TRADICIONAL
En el directorio de compilación
ejecutamos el siguiente comando:
$ su -c "./waf uninstall" |
2) MODO MANUALINUX
abraca-0.8.2-git-26112020-scripts.tar.gz
$ su
# tar zxvf abraca-0.8.2-git-26112020-scripts.tar.gz
# cd abraca-0.8.2-git-26112020-scripts
# ./Desinstalar_abraca-0.8.2-git-26112020 |
Copia de Seguridad
como root
$ su
# tar zxvf abraca-0.8.2-git-26112020-scripts.tar.gz
# cd abraca-0.8.2-git-26112020-scripts
# ./Respaldar_abraca-0.8.2-git-26112020 |
Restaurar la Copia de Seguridad
como root
$ su
# cd /var/copibin/restaurar_copias
# ./Restaurar_abraca-0.8.2-git-26112020
|
Traducción al Español
Descarga
Abraca_es-ML0.run
Firma Digital
Abraca_es-ML0.run.asc
Verificar la firma digital del paquete
$ gpg --import manualinux.asc (sólo es necesario si no lo hemos hecho antes)
$ gpg --verify Abraca_es-ML0.run.asc Abraca_es-ML0.run |
Instalación
como root
$ su -c "sh Abraca_es-ML0.run" |
Iniciamos Abraca
Sólo nos
queda teclear en una terminal o en un lanzador el comando abraca,
y el programa aparecerá en la pantalla.
Enlaces
https://github.com/xmms2 >> Enlace al proyecto en GitHub.
http://abraca.github.io/Abraca >> La
web de Abraca.
|