Copyright
Copyright © José
Luis Lara Carrascal 2012-2019 
Sumario
Introducción
Instalación
Configuración
Enlaces
Introducción
F90cache
es la versión para Fortran
del compilador caché, Ccache. Al igual que
este último, puede
llegar a acelerar hasta 10
veces la recompilación de
cualquier programa cuyo código fuente esté
escrito en Fortran.
Soporta versiones superiores de GNU Gfortran, a
la 4.3, además de otra serie de compiladores de otros
desarrolladores o fabricantes de software.
En este manual trataremos su instalación desde
código fuente y su configuración para que todos
los
procesos de compilación de código escrito en Fortran, que
llevemos a cabo en nuestro sistema
sean cacheados por F90cache.
Instalación
Dependencias
Herramientas de Compilación
Entre paréntesis la
versión con la que se ha compilado F90cache
para la elaboración de este documento.
* GCC - (9.1.0) o Clang - (8.0.1)
* Make - (4.2.1)
* Automake - (1.16.1)
* Autoconf - (2.69)
Descarga
f90cache-0.99c.tar.gz
Optimizaciones
$ export
{C,CXX}FLAGS='-O3 -march=amdfam10 -mtune=amdfam10'
|
Donde pone amdfam10
se indica el procesador respectivo de cada sistema
seleccionándolo de la siguiente tabla: |
Nota informativa sobre las optimizaciones para GCC
|
* La opción '-march=' establece el procesador mínimo con el que funcionará el programa compilado, la opción '-mtune=' el procesador específico para el que será optimizado.
* Los valores separados por comas, son equivalentes, es decir, que lo mismo da poner '-march=k8' que '-march=athlon64'.
* En versiones de GCC 3.2 e inferiores se utiliza la opción '-mcpu=' en lugar de '-mtune='.
|
Nota informativa sobre las optimizaciones para Clang
|
* La opción '-mtune=' está soportada a partir de la versión 3.4 de Clang.
* Los valores de color azul no son compatibles con Clang.
* Las filas con el fondo de color amarillo son valores exclusivos de Clang y, por lo tanto, no son aplicables con GCC.
|
Valores |
CPU |
Genéricos |
generic |
Produce un código
binario optimizado para la mayor parte de procesadores existentes.
Utilizar este valor si no sabemos el nombre del procesador que
tenemos en nuestro equipo. Este valor sólo es aplicable en
la opción '-mtune=', si utilizamos GCC. Esta opción está disponible a
partir de GCC 4.2. |
native |
Produce un código
binario optimizado para el procesador que tengamos en nuestro sistema,
siendo éste detectado utilizando la instrucción cpuid.
Procesadores antiguos pueden no ser detectados utilizando este valor.
Esta opción está disponible a
partir de GCC 4.2. |
x86-64 |
Procesador genérico con extensiones 64-bit. Esta opción está disponible a
partir de GCC 8 y Clang 1.9. |
Intel |
atom |
Intel Atom
con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y
extensiones 64-bit. Esta opción está disponible
desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición bonnell. |
bonnell |
Intel Bonnell con soporte de instrucciones
MOVBE, MMX, SSE, SSE2, SSE3, SSSE3 y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9. |
broadwell |
Intel Broadwell con soporte de instrucciones
MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT,
AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C, RDSEED, ADCX, PREFETCHW y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9 y Clang 3.6. |
cannonlake |
Intel Cannonlake Server con soporte de instrucciones MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL,
FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW,
CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, AVX512VBMI, AVX512IFMA, SHA, UMIP y extensiones 64-bit. Esta opción está disponible a
partir de GCC 8 y Clang 3.9. |
cascadelake |
Intel Cascadelake con
soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI y
extensiones 64-bit. Esta opción está disponible a
partir de GCC 9 y Clang 8. |
core2 |
Intel Core2
con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y
extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.3. |
core-avx2 |
Intel Core (Haswell). Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición haswell. |
core-avx-i |
Intel Core (ivyBridge)
con soporte de instrucciones MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND, F16C y
extensiones 64-bit. Esta opción está disponible
desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición ivybridge. |
corei7 |
Intel Core i7 con soporte de instrucciones MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1 y SSE4.2 y extensiones 64-bit. Soporta también los procesadores Intel
Core i3 e i5. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición nehalem. |
corei7-avx |
Intel Core i7 con soporte de instrucciones MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES y PCLMUL y
extensiones 64-bit. Soporta también los
procesadores Intel Core i3 e i5. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición sandybridge. |
goldmont |
Intel Goldmont con soporte
de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE y extensiones
64-bit. Esta opción está disponible a
partir de GCC 9 y Clang 5. |
goldmont-plus |
Intel Goldmont Plus con
soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
RDPID, SGX, UMIP y extensiones 64-bit. Esta opción está disponible a
partir de GCC 9 y Clang 7. |
haswell |
Intel Haswell con soporte de instrucciones
MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT,
AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
F16C y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9. |
i386 |
Intel i386.
|
i486 |
Intel i486. |
i586, pentium |
Intel Pentium sin soporte de instrucciones MMX. |
i686 |
Produce un código binario optimizado para la mayor parte de
procesadores compatibles con la serie 80686 de Intel. Todos los actuales lo son. |
icelake-client |
Intel Icelake Client con soporte de instrucciones MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL,
FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW,
CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI,
AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,
VAES y extensiones 64-bit. Esta opción está disponible a
partir de GCC 8 y Clang 7. |
icelake-server |
Intel Icelake Server con soporte de instrucciones MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL,
FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW,
CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI,
AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,
VAES, PCONFIG, WBNOINVD y extensiones 64-bit. Esta opción está disponible a
partir de GCC 8 y Clang 7. |
intel |
Intel Haswell y Silvermont. Este valor sólo es aplicable en
la opción '-mtune='. Esta opción está disponible a partir
de GCC 4.9. |
ivybridge |
Intel Ivy Bridge con soporte de instrucciones
MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX,
AES, PCLMUL, FSGSBASE, RDRND, F16C y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9. |
knl |
Intel Knights Landing con soporte de instrucciones
MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX,
PREFETCHW, AVX512F, AVX512PF, AVX512ER y extensiones 64-bit. Esta opción está disponible a partir
de GCC 5 y Clang 3.4. |
knm |
Intel Knights Mill con soporte de instrucciones MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F,
AVX512PF, AVX512ER, AVX512CD, AVX5124VNNIW, AVX5124FMAPS,
AVX512VPOPCNTDQ y extensiones 64-bit. Esta opción está disponible a
partir de GCC 8 y Clang 6. |
lakemont |
Intel Quark Lakemont MCU, basado en el procesador Intel Pentium. Esta opción está disponible a partir
de GCC 6 y Clang 3.9. |
nehalem |
Intel Nehalem con soporte de instrucciones MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT y extensiones
64-bit. Esta opción está disponible a partir
de GCC 4.9. |
nocona |
Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2, SSE3 y extensiones 64-bit. |
penryn |
Intel
Penryn con soporte de instrucciones MMX, SSE, SSE2, SSE3,
SSSE3 y SSE4.1. |
pentiumpro |
Intel PentiumPro. |
pentium2 |
Intel Pentium2 basado en PentiumPro con soporte de instrucciones MMX. |
pentium3, pentium3m |
Intel Pentium3 basado en PentiumPro con soporte de instrucciones MMX y SSE. |
pentium4, pentium4m |
Intel Pentium4 con soporte de instrucciones MMX, SSE y SSE2. |
pentium-m |
Versión de bajo
consumo de Intel Pentium3 con soporte de instrucciones MMX, SSE y SSE2.
Utilizado por los portátiles Centrino. |
pentium-mmx |
Intel PentiumMMX basado en Pentium con soporte de instrucciones MMX. |
prescott |
Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2 y SSE3. |
sandybridge |
Intel Sandy Bridge con soporte de instrucciones
MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX,
AES, PCLMUL y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9 y Clang 3.6. |
silvermont |
Intel Silvermont con soporte de instrucciones
MOVBE, MMX, SSE, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, AES, PCLMU, RDRND y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9 y Clang 3.6. |
skylake |
Intel Skylake con soporte de instrucciones MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT,
XSAVEC, XSAVES y extensiones 64-bit. Esta opción está disponible a partir
de GCC 6 y Clang 3.6. |
skylake-avx512 |
Intel Skylake Server
con soporte de instrucciones MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT,
XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD y
extensiones 64-bit. Esta opción está disponible a partir
de GCC 6 y Clang 3.9. |
tremont |
Intel Tremont con soporte
de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE, RDPID,
SGX, UMIP, GFNI-SSE, CLWB, ENCLV y extensiones 64-bit. Esta opción está disponible a
partir de GCC 9 y Clang 7. |
westmere |
Intel Westmere con soporte de instrucciones
MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES,
PCLMUL y extensiones 64-bit. Esta opción está disponible a partir
de GCC 4.9. |
yonah |
Procesadores
basados en la microarquitectura de Pentium M, con soporte de
instrucciones MMX, SSE, SSE2 y SSE3. |
AMD |
amdfam10, barcelona |
Procesadores basados en
AMD Family 10h core con soporte de instrucciones x86-64 (MMX, SSE,
SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM y extensiones
64-bit). Esta opción está disponible a partir de GCC 4.3. La definición barcelona está disponible a partir de Clang 3.6. |
athlon, athlon-tbird |
AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y SSE prefetch. |
athlon4, athlon-xp, athlon-mp |
Versiones mejoradas de AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y full SSE. |
bdver1 |
Procesadores basados en
AMD Family 15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones
64-bit). Esta opción está disponible a partir
de GCC 4.7. |
bdver2 |
Procesadores basados en
AMD Family 15h core con soporte de instrucciones x86-64 (BMI, TBM, F16C, FMA, LWP, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones
64-bit). Esta opción está disponible a partir
de GCC 4.7. |
bdver3 |
Procesadores basados en
AMD Family 15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones
64-bit). Esta opción está disponible a partir
de GCC 4.8 y Clang 3.4. |
bdver4 |
Procesadores basados en AMD Family 15h core con soporte de instrucciones x86-64
(BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP,
LWP, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción está
disponible a partir de GCC 4.9 y Clang 3.5. |
btver1 |
Procesadores basados en
AMD Family 14h core con soporte de instrucciones x86-64 (MMX, SSE,
SSE2, SSE3, SSE4A, CX16, ABM y extensiones 64-bit). Esta opción está disponible a partir
de GCC 4.6. |
btver2 |
Procesadores basados en
AMD Family 16h core con soporte de instrucciones x86-64 (MOVBE, F16C,
BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3,
SSE2, SSE, MMX y extensiones 64-bit). Esta opción
está disponible a partir
de GCC 4.8. |
geode |
AMD integrado con soporte de instrucciones MMX y 3DNow!. Esta opción está disponible a partir de GCC 4.3. |
k6 |
AMD K6 con soporte de instrucciones MMX. |
k6-2, k6-3 |
Versiones mejoradas de AMD K6 con soporte de instrucciones MMX y 3DNow!. |
k8, opteron, athlon64, athlon-fx |
Procesadores basados en
AMD K8 core con soporte de instrucciones x86-64 (MMX, SSE, SSE2,
3DNow!, enhanced 3DNow! y extensiones 64-bit). |
k8-sse3, opteron-sse3, athlon64-sse3 |
Versiones mejoradas de
AMD K8 core con soporte de instrucciones SSE3. Esta opción
está disponible a partir de GCC 4.3. |
znver1 |
Procesadores basados en
AMD Family 17h core con soporte de instrucciones x86-64 (BMI, BMI2,
F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES,
PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT y extensiones
64-bit). Esta opción está disponible a partir de GCC 6 y Clang 4. |
znver2 |
Procesadores basados en
AMD Family 17h core con soporte de instrucciones x86-64 (BMI, BMI2,
,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA,
CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT y extensiones
64-bit). Esta opción está disponible a partir de GCC 9. |
VIA |
c3 |
VIA C3 con soporte de instrucciones MMX y 3DNow! (no se implementa planificación para este chip). |
c3-2 |
VIA C3-2 (Nehemiah/C5XL) con soporte de instrucciones MMX y SSE (no se implementa planificación para este chip). |
c7 |
VIA C7 (Esther) con
soporte de instrucciones MMX, SSE, SSE2 y SSE (no se implementa
planificación para este chip). Esta opción
está disponible a partir de GCC 7. |
eden-x2 |
VIA Eden X2 con soporte de
instrucciones x86-64, MMX, SSE, SSE2 y SSE3 (no se implementa
planificación para este chip). Esta opción
está disponible a partir de GCC 7. |
eden-x4 |
VIA Eden X4 con soporte de
instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX y AVX2
(no se implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
esther |
VIA Eden Esther con
soporte de instrucciones MMX, SSE, SSE2 y SSE3 (no se implementa
planificación para este chip). Esta opción
está disponible a partir de GCC 7. |
nano |
VIA Nano genérico
con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no
se implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
nano-1000 |
VIA Nano 1xxx con
soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se
implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
nano-2000 |
VIA Nano 2xxx con
soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se
implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
nano-3000 |
VIA Nano 3xxx con
soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3, SSSE3 y SSE4.1
(no se implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
nano-x2 |
VIA Nano Dual
Core con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y
SSSE3 (no se implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
nano-x4 |
VIA Nano Quad
Core con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y
SSSE3 (no se implementa planificación para este chip). Esta
opción está disponible a partir de GCC 7. |
IDT |
winchip2 |
IDT Winchip2, que equivale a un i486 con soporte de instrucciones MMX y 3DNow!. |
winchip-c6 |
IDT Winchip C6, que equivale a un i486 con soporte de instrucciones MMX. |
Optimizaciones adicionales
Optimizaciones adicionales |
GCC |
Graphite
|
$ export {C,CXX}FLAGS+=' -floop-interchange -ftree-loop-distribution -floop-strip-mine -floop-block'
|
IPA
|
$ export {C,CXX}FLAGS+=' -fipa-pta'
|
LTO |
$ export {C,CXX}FLAGS+=' -fuse-linker-plugin -flto=2'
|
Donde pone 2
se indica el número de núcleos de nuestro procesador, si
sólo tiene uno, utilizar el parámetro -flto |
Clang |
New Pass Manager |
$ export {C,CXX}FLAGS+=' -fexperimental-new-pass-manager' |
Polly |
$ export {C,CXX}FLAGS+=' -O3 -mllvm -polly -mllvm -polly-vectorizer=stripmine' |
LTO |
$ export {C,CXX,LD}FLAGS+=' -flto' |
ThinLTO |
$ export {C,CXX,LD}FLAGS+=' -flto=thin' |
La aplicación de esta optimización es alternativa
a la tradicional LTO, a partir de Clang 3.9 y, por lo tanto, no es combinable con la misma. |
Parámetros adicionales
Parámetros adicionales de eliminación de avisos en el proceso de compilación |
$ export {C,CXX}FLAGS+=' -w' |
Establecer la ruta de búsqueda de directorios de librerías en sistemas de 64 bits multiarquitectura |
$ export
LDFLAGS+=" -L/usr/lib64 -L/usr/local/lib64" |
Establecer el uso de enlazador dinámico para LLD |
$ export LDFLAGS+=' -fuse-ld=lld' |
Optimizaciones complementarias LTO/ThinLTO de LLD |
$ export LDFLAGS+=' -Wl,--lto-new-pass-manager -Wl,--lto-aa-pipeline=globals-aa -Wl,--lto-newpm-passes=memcpyopt' |
Optimizaciones complementarias LTO de LLD |
$ export LDFLAGS+=' -Wl,--lto-partitions=2' |
Optimizaciones complementarias ThinLTO de LLD |
$ export LDFLAGS+=' -Wl,--thinlto-jobs=2' |
Donde pone 2
se indica el número de núcleos de nuestro procesador, si
sólo tiene uno, no es necesario añadir el parámetro en cuestión. |
Eliminar los símbolos innecesarios para la ejecución del programa |
$ export
LDFLAGS+=" -Wl,-s" |
Establecer la variable de entorno de uso de compilador para Clang |
$ export CC=clang CXX=clang++ |
Extracción y Configuración 
$ tar zxvf f90cache-0.99c.tar.gz
$ cd f90cache-0.99c
$ ./configure --prefix=/usr
|
Explicación de los
comandos
--prefix=/usr : Instala F90cache
en el directorio principal /usr.
Compilación
Instalación
como root
$ su
# make install
# ln -s /usr/bin/f90cache /bin/gfortran
|
Con la creación del enlace simbólico lo que hacemos es que F90cache gestione todas las compilaciones de código Fortran que vayamos a realizar en nuestro sistema, utilizamos el directorio /bin, porque éste siempre aparece por delante del directorio /usr/bin en la configuración del PATH en los sistemas GNU/Linux, directorio éste último, que es el habitual de ubicación del ejecutable de la versión de Gfortran que tengamos en nuestro sistema.
Para comprobar que estamos utilizando este enlace simbólico, nada mejor que utilizar el programa which, que se encarga de buscar el binario que le indiquemos previamente. Por último recordar que la ejecución de F90cache
es completamente transparente en los procesos de compilación, es
decir, no vamos a notar que se está ejecutando cuando compilemos
un programa, la única manera de saberlo es comprobar con
cualquier administrador de archivos que el directorio de la
caché, tiene actividad.
[jose@localhost ~]$ which gfortran
/bin/gfortran |
Estadísticas de Compilación e Instalación de F90cache
Estadísticas de Compilación e Instalación de F90cache |
CPU |
AMD Phenom(tm) II X4 965 Processor |
MHz |
3415.533 |
RAM |
4096 MB |
Sistema de archivos |
XFS |
Versión del Kernel |
5.2.7-ck1 SMP PREEMPT x86_64 |
Modo de frecuencia de la CPU |
schedutil |
Versión de Glibc |
2.30 |
Enlazador dinámico |
LLD 8.0.1 |
Compilador |
Clang 8.0.1 |
Parámetros de optimización |
-03 -march=amdfam10 -mtune=amdfam10 -fexperimental-new-pass-manager -mllvm -polly -mllvm -polly-vectorizer=stripmine -flto=thin -Wl,--lto-new-pass-manager -Wl,--lto-aa-pipeline=globals-aa -Wl,--lto-newpm-passes=memcpyopt |
Parámetros de compilación |
-j4 |
Tiempo de compilación |
2" |
Archivos instalados |
2 |

|
Enlaces simbólicos creados |
1 |
/bin/gfortran |
Ocupación de espacio en disco |
68 KB |
Desinstalación
como root
1) MODO TRADICIONAL
Este programa no tiene soporte para desinstalación con el comando 'make uninstall'
2) MODO MANUALINUX
El principal inconveniente del comando anterior es
que
tenemos que tener el directorio de compilación en nuestro
sistema para poder desinstalar el programa. En algunos casos esto
supone muchos megas de espacio en disco. Con el paquete de scripts que
pongo a continuación logramos evitar
el único inconveniente que tiene la compilación
de
programas, y es el tema de la desinstalación de los mismos
sin
la necesidad de tener obligatoriamente una copia de las fuentes
compiladas.
f90cache-0.99c-scripts.tar.gz
$ su
# tar zxvf f90cache-0.99c-scripts.tar.gz
# cd f90cache-0.99c-scripts
# ./Desinstalar_f90cache-0.99c |
Copia de Seguridad
como root
Con este otro script creamos una copia de seguridad de los binarios
compilados, recreando la estructura de directorios de los mismos en un
directorio de copias de seguridad (copibin)
que se crea en el directorio /var. Cuando se haya creado el paquete comprimido de
los binarios podemos copiarlo como usuario a nuestro home
y borrar el que ha creado el script de respaldo, teniendo en cuenta que si queremos
volver a restaurar la copia, tendremos que volver a copiarlo al lugar
donde se ha creado.
$ su
# tar zxvf f90cache-0.99c-scripts.tar.gz
# cd f90cache-0.99c-scripts
# ./Respaldar_f90cache-0.99c |
Restaurar la Copia de Seguridad
como root
Y con este otro script (que se copia de forma automática cuando
creamos la copia de respaldo del programa) restauramos la copia de
seguridad como root cuando resulte necesario.
$ su
# cd /var/copibin/restaurar_copias
# ./Restaurar_f90cache-0.99c
|
Configuración de F90cache
1) El directorio por defecto de ubicación de la caché
Tanto en nuestro directorio personal, como en el directorio del
root, el tamaño máximo definido por defecto de la
caché es de 1 GB, tamaño que podemos modificar desde la
línea de comandos, con el siguiente comando, un ejemplo
estableciéndola en 500 MB.
[jose@localhost ~]$ f90cache -M 500M
Set cache size limit to 512000k
|
También podemos utilizar G (para GB) y K (para KB), otro ejemplo, esta vez la pongo en 2 GB.
[jose@localhost ~]$ f90cache -M 2G
Set cache size limit to 2097152k
|
2) Limpiar la caché
Para ajustar el tamaño de la caché al máximo
establecido en su configuración, ejecutamos el siguiente
comando, aunque esto no es necesario hacerlo ya que el programa lo hace
de forma automática.
Para borrarla por completo, el siguiente,
3) Estadísticas de uso
Como cualquier aplicación caché que se precie, F90cache también nos muestra estadísticas de uso, con el siguiente comando,
Y yo en estos momentos las tengo así,
[jose@localhost
.f90cache]$ f90cache
-s
cache
directory
/home/jose/.f90cache
cache
hit
10
cache
miss
1014
called for
link
74
no input
file
117
files in
cache
392
cache
size
788 Kbytes
max cache
size
1024.0 Mbytes
|
Lo único que nos debe de interesar de todo esto, son los dos últimos datos, cache size, que nos indica el espacio que está ocupando en estos momentos, y max cache size,
que nos indica el tamaño máximo que tenemos configurado.
Para poner a cero las estadísticas, ejecutamos el siguiente
comando,
Enlaces
http://people.irisa.fr/Edouard.Canot/f90cache/ >> La web de F90cache.
|