Manualinux
http://www.nvu.com http://www.gimp.org InicioPresentaciónActualizacionesManualesDescargasNoticiasAgradecimientoEnlaces

Entornos GráficosAplicaciones

DesarrolloEmuladoresInternetJuegosMultimediaSistema

Instalar Doomsday desde ceroJuegos - AssaultCube

Instalar Vavoom desde cero




Instalar Vavoom desde cero




Copyright

Copyright © José Luis Lara Carrascal  2011-2017   http://manualinux.eu



Sumario

Introducción
Preliminares
Instalación
Recursos adicionales
Iniciamos Vavoom
Enlaces



 
Introducción

Al igual que Doomsday, Vavoom mejora considerablemente el aspecto y la jugabilidad de los míticos Doom, Heretic y Hexen, además del no menos conocido Strife. Junto al manual se incluye un parche que traduce al español el lanzador gráfico de Vavoom, vlaunch, lanzador que nos facilitará considerablemente la ejecución de estos juegos. 



Preliminares  

1) Comprobar que la ruta de instalación de los binarios del programa la tenemos en nuestro PATH


Abrimos una ventana de terminal y ejecutamos el siguiente comando,

[jose@Fedora-18 ~]$ echo $PATH
/usr/lib/qt-3.3/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/jose/bin

Si no aparece entre las rutas mostradas el directorio /usr/local/bin, abrimos un editor de texto y añadimos lo siguiente,

#!/bin/sh

export PATH=/usr/local/bin:$PATH

Lo guardamos con el nombre variables.sh, y lo instalamos en /etc/profile.d.

$ su
# install -m755 variables.sh /etc/profile.d

Tenemos que cerrar el emulador de terminal y volverlo a abrir para que la variable de entorno aplicada sea efectiva. Es conveniente guardar una copia de este script para posteriores instalaciones de nuestro sistema, teniendo en cuenta que es el que se va a utilizar a partir de ahora en todos los manuales de esta web, para establecer variables de entorno globales, excepto en aquellas que sólo afectan al usuario, en las que se utilizará el archivo de configuración personal, ~/.bashrc.

La ventaja de utilizar el directorio /etc/profile.d es que es común a todas las distribuciones y nos evita tener que editar otros archivos del sistema como por ejemplo, /etc/profile.

2) Comprobar que la variable de entorno 'XDG_DATA_DIRS' incluye el directorio /usr/local/share

Esta variable se aplica para que los archivos desktop ubicados en un directorio específico del sistema puedan ser leídos por los menús de entornos gráficos como XFce 4, o paneles como LXPanel o Fbpanel. Este aspecto es bastante delicado porque cada distribución es un mundo y lo mejor que podemos hacer es establecer una variable de entorno global que incluya todos los directorios predefinidos del sistema que incluyen archivos desktop, siempre y cuando el directorio /usr/local/share no esté incluido por defecto en la distribución de turno. Para saberlo basta abrir el menú de aplicaciones en cualquiera de los programas antes comentados y comprobar que aparece la entrada correspondiente a la aplicación tratada en este manual. Si no es así, en el mismo archivo /etc/profile.d/variables.sh, añadimos lo que está en rojo:

#!/bin/sh

export PATH=/usr/local/bin:$PATH

export XDG_DATA_DIRS=/usr/share:/usr/local/share:$XDG_DATA_DIRS

3) Desinstalar versiones anteriores del programa ubicadas en el directorio /usr

Aún en el caso de que la versión a compilar la vayamos a instalar en el mismo directorio que la que proporciona la distribución, siempre se debe desinstalar previamente la versión antigua, para evitar conflictos innecesarios.


 
Instalación

Dependencias

Herramientas de Compilación


Entre paréntesis la versión con la que se ha compilado Vavoom para la elaboración de este documento.

* GCC - (7.2.0) o Clang - (5.0.0)
* CMake - (3.10.0)
* Make - (4.2.1)

Librerías de Desarrollo

* Xorg - (7.7 / xorg-server 1.19.5)
   LibICE - (1.0.9)
   LibX11 - (1.6.5)
   LibXext - (1.3.3)
* WxGTK (Unicode) - (2.8.12.1)
* SDL - (1.2.15)
* SDL_mixer - (1.2.12)
* Mesa - (17.2.5)
* OpenAL - (1.18.1)
* Libjpeg - (9b)
* Libpng - (1.6.34)
* Libvorbis - (1.3.4)
* FLAC - (1.3.2)
* MAD - (0.15.1)
* Libmikmod - (3.3.11)
* Zlib - (1.2.11)

Aplicaciones

* Convert (ImageMagick) - (7.0.7-11) [1]

[1] Requerido para poder crear los iconos del archivo desktop.



Descarga

vavoom-1.33.tar.xz  |  vlaunch_es.diff.gz

Firma Digital  Clave pública PGP

vavoom-1.33.tar.xz.asc

Verificar la firma digital del paquete

$ gpg --import manualinux.asc
$ gpg --verify vavoom-1.33.tar.xz.asc vavoom-1.33.tar.xz

Optimizaciones

$ export {C,CXX}FLAGS='-O3 -march=amdfam10 -mtune=amdfam10'

Donde pone amdfam10 se indica el procesador respectivo de cada sistema seleccionándolo de la siguiente tabla:
Nota informativa sobre las optimizaciones para GCC
* La opción '-march=' establece el procesador mínimo con el que funcionará el programa compilado, la opción '-mtune=' el procesador específico para el que será optimizado. 

* Los valores separados por comas, son equivalentes, es decir, que lo mismo da poner '-march=k8' que '-march=athlon64'.

* En versiones de GCC 3.2 e inferiores se utiliza la opción '-mcpu=' en lugar de '-mtune='.
Nota informativa sobre las optimizaciones para Clang
* La opción '-mtune=' está soportada a partir de la versión 3.4 de Clang.

* Los valores de color azul no son compatibles con Clang.

* Las filas con el fondo de color amarillo son valores exclusivos de Clang, y por lo tanto, no son aplicables con GCC.
Valores CPU
Genéricos
generic Produce un código binario optimizado para la mayor parte de procesadores existentes. Utilizar este valor si no sabemos el nombre del procesador que tenemos en nuestro equipo. Este valor sólo es aplicable en la opción '-mtune=', si utilizamos GCC. Esta opción está disponible a partir de GCC 4.2.
native Produce un código binario optimizado para el procesador que tengamos en nuestro sistema, siendo éste detectado utilizando la instrucción cpuid. Procesadores antiguos pueden no ser detectados utilizando este valor. Esta opción está disponible a partir de GCC 4.2.
Intel
atom Intel Atom con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y extensiones 64-bit. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición bonnell.
bonnell Intel Bonnell con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3 y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9.
broadwell Intel Broadwell con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9 y Clang 3.6.
cannonlake Intel Cannonlake con soporte de instrucciones X87, MMX, AVX, FXSR, CMPXCHG16B, POPCNT, AES, PCLMUL, XSAVE, XSAVEOPT, LAHFSAHF, RDRAND, F16C, FSGSBase, AVX2, BMI, BMI2, FMA, LZCNT, MOVBE, INVPCID, VMFUNC, RTM, HLE, SlowIncDec, ADX, RDSEED, SMAP, MPX, XSAVEC, XSAVES, SGX, CLFLUSHOPT, AVX512, CDI, DQI, BWI, VLX, PKU, PCOMMIT, CLWB, VBMI, IFMA y SHA. Esta opción está disponible a partir de Clang 3.9.
core2 Intel Core2 con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.3.
core-avx2 Intel Core (Haswell). Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición haswell.
core-avx-i Intel Core (ivyBridge) con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND, F16C y extensiones 64-bit. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición ivybridge.
corei7 Intel Core i7 con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 y SSE4.2 y extensiones 64-bit. Soporta también los procesadores Intel Core i3 e i5. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición nehalem.
corei7-avx Intel Core i7 con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES y PCLMUL y extensiones 64-bit. Soporta también los procesadores Intel Core i3 e i5. Esta opción está disponible desde GCC 4.6, hasta GCC 4.8. A partir de GCC 4.9 se utiliza la definición sandybridge.
goldmont Intel Goldmont con soporte de instrucciones X87, MMX, SSE42, FXSR, CMPXCHG16B, MOVBE, POPCNT, PCLMUL, AES, PRFCHW, CallRegIndirect, SlowLEA, SlowIncDec, SlowBTMem, LAHFSAHF, MPX, SHA, RDSEED, XSAVE, XSAVEOPT, XSAVEC, XSAVES y CLFLUSHOPT. Esta opción está disponible a partir de Clang 5.
haswell Intel Haswell con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9.
i386 Intel i386.
i486 Intel i486.
i586, pentium Intel Pentium sin soporte de instrucciones MMX.
i686 Produce un código binario optimizado para la mayor parte de procesadores compatibles con la serie 80686 de Intel. Todos los actuales lo son.
intel Intel Haswell y Silvermont. Este valor sólo es aplicable en la opción '-mtune='. Esta opción está disponible a partir de GCC 4.9.
ivybridge Intel Ivy Bridge con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND, F16C y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9.
knl Intel Knights Landing con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER y extensiones 64-bit. Esta opción está disponible a partir de GCC 5 y Clang 3.4.
lakemont Intel Quark Lakemont MCU, basado en el procesador Intel Pentium. Esta opción está disponible a partir de GCC 6 y Clang 3.9.
nehalem Intel Nehalem con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9.
nocona Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2, SSE3 y extensiones 64-bit.
penryn Intel Penryn con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3 y SSE4.1.
pentiumpro Intel PentiumPro.
pentium2 Intel Pentium2 basado en PentiumPro con soporte de instrucciones MMX.
pentium3, pentium3m Intel Pentium3 basado en PentiumPro con soporte de instrucciones MMX y SSE.
pentium4, pentium4m Intel Pentium4 con soporte de instrucciones MMX, SSE y SSE2.
pentium-m Versión de bajo consumo de Intel Pentium3 con soporte de instrucciones MMX, SSE y SSE2. Utilizado por los portátiles Centrino.
pentium-mmx Intel PentiumMMX basado en Pentium con soporte de instrucciones MMX.
prescott Versión mejorada de Intel Pentium4 con soporte de instrucciones MMX, SSE, SSE2 y SSE3.
sandybridge Intel Sandy Bridge con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9 y Clang 3.6.
silvermont Intel Silvermont con soporte de instrucciones MOVBE, MMX, SSE, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMU, RDRND y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9 y Clang 3.6.
skx Intel Skylake Server con soporte de instrucciones X87, MMX, AVX, FXSR, CMPXCHG16B, POPCNT, AES, PCLMUL, XSAVE, XSAVEOPT, LAHFSAHF, RDRAND, F16C, FSGSBase, AVX2, BMI, BMI2, FMA, LZCNT, MOVBE, INVPCID, VMFUNC, RTM, HLE, SlowIncDec, ADX, RDSEED, SMAP, MPX, XSAVEC, XSAVES, SGX, CLFLUSHOPT, AVX512, CDI, DQI, BWI, VLX, PKU, PCOMMIT y CLWB. Esta opción está disponible a partir de Clang 3.5. A partir de Clang 3.9 se utiliza también la definición skylake-avx512.
skylake Intel Skylake con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES y extensiones 64-bit. Esta opción está disponible a partir de GCC 6 y Clang 3.6.
skylake-avx512 Intel Skylake Server con soporte de instrucciones MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD y extensiones 64-bit. Esta opción está disponible a partir de GCC 6 y Clang 3.9
slm Intel Silvermont con soporte de instrucciones X87, MMX, SSE42, FXSR, CMPXCHG16B, MOVBE, POPCNT, PCLMUL, AES, SlowDivide64, CallRegIndirect, PRFCHW, SlowLEA, SlowIncDec, SlowBTMem y LAHFSAHF. Esta opción está disponible a partir de Clang 3.4. A partir de Clang 3.9 se utiliza también la definición silvermont.
westmere Intel Westmere con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL y extensiones 64-bit. Esta opción está disponible a partir de GCC 4.9.
yonah Procesadores basados en la microarquitectura de Pentium M, con soporte de instrucciones MMX, SSE, SSE2 y SSE3.
AMD
amdfam10, barcelona Procesadores basados en AMD Family 10h core con soporte de instrucciones x86-64 (MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.3. La definición barcelona está disponible a partir de Clang 3.6.
athlon, athlon-tbird AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y SSE prefetch.
athlon4, athlon-xp, athlon-mp Versiones mejoradas de AMD Athlon con soporte de instrucciones MMX, 3DNow!, enhanced 3DNow! y full SSE.
bdver1 Procesadores basados en AMD Family 15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.7.
bdver2 Procesadores basados en AMD Family 15h core con soporte de instrucciones x86-64 (BMI, TBM, F16C, FMA, LWP, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.7.
bdver3 Procesadores basados en AMD Family 15h core con soporte de instrucciones x86-64 (FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.8 y Clang 3.4.
bdver4 Procesadores basados en AMD Family 15h core con soporte de instrucciones x86-64 (BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.9 y Clang 3.5.
btver1 Procesadores basados en AMD Family 14h core con soporte de instrucciones x86-64 (MMX, SSE, SSE2, SSE3, SSE4A, CX16, ABM y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.6.
btver2 Procesadores basados en AMD Family 16h core con soporte de instrucciones x86-64 (MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX y extensiones 64-bit). Esta opción está disponible a partir de GCC 4.8.
geode AMD integrado con soporte de instrucciones MMX y 3DNow!. Esta opción está disponible a partir de GCC 4.3.
k6 AMD K6 con soporte de instrucciones MMX.
k6-2, k6-3 Versiones mejoradas de AMD K6 con soporte de instrucciones MMX y 3DNow!.
k8, opteron, athlon64, athlon-fx Procesadores basados en AMD K8 core con soporte de instrucciones x86-64 (MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! y extensiones 64-bit).
k8-sse3, opteron-sse3, athlon64-sse3 Versiones mejoradas de AMD K8 core con soporte de instrucciones SSE3. Esta opción está disponible a partir de GCC 4.3.
x86-64 Procesadores AMD y compatibles con soporte de instrucciones x86-64, SSE2 y extensiones 64-bit.
znver1 Procesadores basados en AMD Family 17h core con soporte de instrucciones x86-64 (BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT y extensiones 64-bit). Esta opción está disponible a partir de GCC 6 y Clang 4.
VIA
c3 VIA C3 con soporte de instrucciones MMX y 3DNow! (no se implementa planificación para este chip).
c3-2 VIA C3-2 (Nehemiah/C5XL) con soporte de instrucciones MMX y SSE (no se implementa planificación para este chip).
c7 VIA C7 (Esther) con soporte de instrucciones MMX, SSE, SSE2 y SSE (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
eden-x2 VIA Eden X2 con soporte de instrucciones x86-64, MMX, SSE, SSE2 y SSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
eden-x4 VIA Eden X4 con soporte de instrucciones MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX y AVX2 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
esther VIA Eden Esther con soporte de instrucciones MMX, SSE, SSE2 y SSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano VIA Nano genérico con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano-1000 VIA Nano 1xxx con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano-2000 VIA Nano 2xxx con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano-3000 VIA Nano 3xxx con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3, SSSE3 y SSE4.1 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano-x2 VIA Nano Dual Core con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
nano-x4 VIA Nano Quad Core con soporte de instrucciones x86-64, MMX, SSE, SSE2, SSE3 y SSSE3 (no se implementa planificación para este chip). Esta opción está disponible a partir de GCC 7.
IDT
winchip2 IDT Winchip2, que equivale a un i486 con soporte de instrucciones MMX y 3DNow!.
winchip-c6 IDT Winchip C6, que equivale a un i486 con soporte de instrucciones MMX.

Optimizaciones adicionales

Optimizaciones adicionales
GCC
Graphite
$ export {C,CXX}FLAGS+=' -floop-interchange -ftree-loop-distribution -floop-strip-mine -floop-block'
LTO
$ export AR=gcc-ar; export RANLIB=gcc-ranlib; export NM=gcc-nm
$ export {C,CXX}FLAGS+=' -fuse-linker-plugin -flto=2'
Donde pone 2 se indica el número de núcleos de nuestro procesador, si sólo tiene uno, utilizar el parámetro -flto

Clang
Polly
$ export {C,CXX}FLAGS+=' -O3 -mllvm -polly -mllvm -polly-vectorizer=stripmine -mllvm -polly-position=before-vectorizer'
LTO
$ export AR=llvm-ar; export RANLIB=llvm-ranlib; export NM=llvm-nm
$ export {C,CXX}FLAGS+=' -flto'
ThinLTO
$ export {C,CXX}FLAGS+=' -flto=thin'
La aplicación de esta optimización es alternativa a la tradicional LTO, a partir de Clang 3.9, y por lo tanto, no es combinable con la misma.

Parámetros adicionales

Parámetros adicionales de eliminación de avisos específicos en el proceso de compilación
Clang
$ export {C,CXX}FLAGS+=' -Qunused-arguments -Wno-inline-new-delete -Wno-missing-exception-spec'

Establecer el RPATH correspondiente si utilizamos una versión de GCC que no es la principal del sistema
$ export LDFLAGS="-Wl,-rpath,/opt/gcc7/lib -lstdc++ -lm"
Sustituir /opt/gcc7/lib por la ruta de instalación de la versión de GCC alternativa que se vaya a utilizar en el proceso de compilación de este paquete. El parámetro adicional -lm es requerido para la compilación con Clang.

Establecer el estándar de lenguaje de programación correcto para C++
GCC 6 y superiores
$ export CXXFLAGS+=' -std=gnu++98'

Establecer la variable de entorno de uso de compilador para Clang
$ export {CC,CXX}=clang
Si utilizamos Clang con Ccache, tendremos que establecer la variable de entorno correspondiente de Ccache de uso de compilador.
$ export CCACHE_CC=clang

Extracción y Configuración  Bloc de Notas Información general sobre el uso de los comandos

$ tar Jxvf vavoom-1.33.tar.xz
$ cd vavoom-1.33
$ zcat ../vlaunch_es.diff.gz | patch -Np1
$ mkdir build
$ cd build
$ cmake -DCMAKE_AR=$(which $AR) -DCMAKE_RANLIB=$(which $RANLIB) ../

Explicación de los comandos

zcat ../vlaunch_es.diff.gz | patch -Np1 : Aplicamos este parche personal que traduce el lanzador gráfico del programa, vlaunch, al español.

-DCMAKE_AR=$(which $AR) -DCMAKE_RANLIB=$(which $RANLIB) : Sincronizamos las variables de entorno establecidas en el manual, relativas a los binarios ejecutables intermedios, gcc-ar y gcc-ranlib, con los parámetros de configuración utilizados por CMake relativos a los programas ar y ranlib, para poder aplicar correctamente la optimización LTO. Si compilamos el paquete con Clang, se utilizarán los binarios ejecutables de LLVM, establecidos en la correspondiente variable de entorno de optimización LTO de Clang.

Compilación

$ make

Parámetros de compilación opcionales

VERBOSE=1 : Muestra más información en el proceso de compilación.

-j2 : Si tenemos un procesador de doble núcleo (dual-core), y el kernel está optimizado para el mismo y es SMP, con este parámetro aumentaremos el número de procesos de compilación simultáneos a un nivel de 2 y aceleraremos el tiempo de compilación del programa de forma considerable.
-j4 : Lo mismo que arriba pero con procesadores de 4 núcleos (quad-core).

Instalación como root

$ su
# make install/strip
# for i in /usr/local/share/icons/hicolor ; do \
install -dm755 $i/{16x16,24x24,32x32,48x48}/apps ; \
convert -resize 48 ../source/vavoom.png $i/48x48/apps/vavoom.png ; \
convert -resize 24 ../source/vavoom.png $i/24x24/apps/vavoom.png ; \
convert -resize 16 ../source/vavoom.png $i/16x16/apps/vavoom.png ; \
install -m644 ../source/vavoom.png $i/32x32/apps/vavoom.png ; \
gtk-update-icon-cache -tf $i &> /dev/null ; \
done

Creación del archivo vavoom.desktop

Para que Vavoom sea detectado por los menús de entornos gráficos como XFce 4 o paneles como LXPanel o Fbpanel, abrimos un editor de texto y añadimos lo siguiente: 

[Desktop Entry]
Name=Vavoom
GenericName=Vavoom
Comment=Jugar al Doom en 3D
Exec=vlaunch
Icon=vavoom
Categories=Application;Game;ArcadeGame
Type=Application

Lo guardamos con la codificación de caracteres UTF-8, y con el nombre vavoom.desktop. Luego lo instalamos como root en /usr/local/share/applications. La desinstalación y respaldo de este archivo viene incluida en los scripts correspondientes proporcionados en este manual.

$ su
# install -dm755 /usr/local/share/applications
# install -m644 vavoom.desktop /usr/local/share/applications


Estadísticas de Compilación e Instalación de Vavoom

Estadísticas de Compilación e Instalación de Vavoom
CPU AMD Athlon(tm) II X2 260 Processor
MHz 3214.610
RAM 4096 MB
Sistema de archivos XFS
Versión de Glibc 2.25
Enlazador dinámico GNU gold (Binutils 2.29.1) 1.14
Compilador Clang 5.0.0 + Ccache 3.3.4
Parámetros de optimización -03 -march=amdfam10 -mtune=amdfam10 -mllvm -polly -mllvm -polly-vectorizer=stripmine -mllvm -polly-position=before-vectorizer -flto=thin
Parámetros de compilación VERBOSE=1 -j2
Tiempo de compilación 4' 01"
Archivos instalados (incluidos los recursos adicionales) 64
Mostrar/Ocultar la lista de archivos instalados
Ocupación de espacio en disco 673,0 MB

Directorio de configuración personal

~/.vavoom Es el directorio de configuración personal de Vavoom en nuestro home

Desinstalación como root

1) MODO TRADICIONAL

************************

2) MODO MANUALINUX

El principal inconveniente del comando anterior es que tenemos que tener el directorio de compilación en nuestro sistema para poder desinstalar el programa. En algunos casos esto supone muchos megas de espacio en disco. Con el paquete de scripts que pongo a continuación logramos evitar el único inconveniente que tiene la compilación de programas, y es el tema de la desinstalación de los mismos sin la necesidad de tener obligatoriamente una copia de las fuentes compiladas.

vavoom-1.33-scripts.tar.gz

$ su
# tar zxvf vavoom-1.33-scripts.tar.gz
# cd vavoom-1.33-scripts
# ./Desinstalar_vavoom-1.33

Copia de Seguridad como root

Con este otro script creamos una copia de seguridad de los binarios compilados, recreando la estructura de directorios de los mismos en un directorio de copias de seguridad (copibin) que se crea en el directorio /var. Cuando se haya creado el paquete comprimido de los binarios podemos copiarlo como usuario a nuestro home y borrar el que ha creado el script de respaldo, teniendo en cuenta que si queremos volver a restaurar la copia, tendremos que volver a copiarlo al lugar donde se ha creado.

$ su
# tar zxvf vavoom-1.33-scripts.tar.gz
# cd vavoom-1.33-scripts
# ./Respaldar_vavoom-1.33

Restaurar la Copia de Seguridad como root

Y con este otro script (que se copia de forma automática cuando creamos la copia de respaldo del programa) restauramos la copia de seguridad como root cuando resulte necesario.

$ su
# cd /var/copibin/restaurar_copias
# ./Restaurar_vavoom-1.33




Recursos adicionales  Bloc de Notas

Modelos en 3D, texturas en alta resolución y archivos de sonido que complementan las características de uso de Vavoom. Su instalación es opcional.

1) Modelos en 3D

Estos modelos en 3D reemplazan en el caso de Doom y Heretic, bastantes sprites de los que contiene el juego, en el caso de Hexen y Strife, algunos.

Descarga   

vmodels-doom-1.4.3.zip  |  vmodels-heretic-1.4.3.zip  |  vmodels-hexen-1.4.3.zip  |  vmodels-strife-1.4.3.zip

Instalación como root

$ su
# unzip vmodels-doom-1.4.3.zip -d /usr/local/share/vavoom
# unzip vmodels-heretic-1.4.3.zip -d /usr/local/share/vavoom
# unzip vmodels-hexen-1.4.3.zip -d /usr/local/share/vavoom
# unzip vmodels-strife-1.4.3.zip -d /usr/local/share/vavoom

2) Texturas en alta resolución

Mejoran considerablemente el aspecto visual del juego, al sustituir las texturas originales por otras de mayor resolución.

Descarga

vv-dhtp-20100114.zip  |  vtextures-heretic-1.0.zip  |  vtextures-hexen-1.0.zip  |  vtextures-strife-1.0.zip

Instalación como root

$ su
# unzip vv-dhtp-20100114.zip -d /usr/local/share/vavoom
# unzip vtextures-heretic-1.0.zip -d /usr/local/share/vavoom
# unzip vtextures-hexen-1.0.zip -d /usr/local/share/vavoom
# unzip vtextures-strife-1.0.zip -d /usr/local/share/vavoom


3) Archivos de sonido

Versiones mejoradas de los archivos de sonido originales de los juegos.

Descarga

vmusic-doom1-1.0.zip  |  vmusic-doom2-1.0.zip  |  vmusic-tnt-1.0.zip

vmusic-plutonia-1.0.zip  |  vmusic-heretic-1.0.zip  |  vmusic-hexen-1.0.zip

Instalación como root

$ su
# unzip vmusic-doom1-1.0.zip -d /usr/local/share/vavoom
# unzip vmusic-doom2-1.0.zip -d /usr/local/share/vavoom
# unzip vmusic-tnt-1.0.zip -d /usr/local/share/vavoom
# unzip vmusic-plutonia-1.0.zip -d /usr/local/share/vavoom
# unzip vmusic-heretic-1.0.zip -d /usr/local/share/vavoom
# unzip vmusic-hexen-1.0.zip -d /usr/local/share/vavoom




Iniciamos Vavoom

Sólo nos queda teclear en una terminal o en un lanzador el comando vlaunch, y el lanzador gráfico de Vavoom aparecerá en la pantalla, lo primero que tenemos que hacer es indicarle el directorio en el que tenemos ubicados los archivos WAD, en mi caso, /home/jose/wads. Luego configuramos la resolución que vamos a utilizar y finalmente seleccionamos el juego que deseamos lanzar.

Por si existiera algún problema en la carga de los archivos wad, éstos no pueden estar en mayúscula, tanto el nombre como la extensión. Mi directorio wad está configurado de la siguiente forma, en lo que al nombre de los archivos respecta:

[jose@localhost wads]$ ls
doom2.wad  heretic.wad  plutonia.wad  tnt.wad
doom.wad   hexen.wad    strife1.wad   voices.wad

Si tuvieramos problemas al usar como sistema de sonido, OpenAL, en esta sección del manual de AssaultCube, explico cómo configurarlo para que funcione correctamente.


Captura - Vavoom - Vlaunch - 1


Captura - Vavoom - Vlaunch - 2


Captura - Vavoom - Ultimate Doom
Ultimate Doom


Captura - Vavoom - Doom2
Doom 2


Captura - Vavoom - Fina Doom - Plutonia
Final Doom - Plutonia


Captura - Vavoom - Fina Doom - Tnt
Final Doom - Tnt


Captura - Vavoom - Heretic
Heretic


Captura - Vavoom - Hexen
Hexen


Captura - Vavoom - Strife
Strife




Enlaces


http://vavoom-engine.com >> La web de Vavoom.


Foro Galería Blog


Actualizado el 23-11-2017

Instalar Vavoom desde cero

Instalar Doomsday desde ceroJuegos - AssaultCube